

authoscope

authoscope (formerly badtouch) is a scriptable network authentication cracker.
While the space for common service bruteforce is already very [https://nmap.org/ncrack/] well [https://github.com/vanhauser-thc/thc-hydra]
saturated [https://github.com/jmk-foofus/medusa], you may still end up writing your own python scripts when testing
credentials for web applications.

The scope of authoscope is specifically cracking custom services. This is done
by writing scripts that are loaded into a lua runtime. Those scripts represent
a single service and provide a verify(user, password) function that returns
either true or false. Concurrency, progress indication and reporting is
magically provided by the authoscope runtime.

[image: _images/Ke5rHVsz5sJePNUK1k0ASAvuZ.png]
 [https://asciinema.org/a/Ke5rHVsz5sJePNUK1k0ASAvuZ]
Getting Started

	Installation
	Archlinux

	Mac OSX

	Docker

	Source

	Usage
	Options

	Dictionary attack

	Credential confirmation

	Username enumeration

	Oneshot

	Scripting
	base64_decode

	base64_encode

	clear_err

	execve

	hex

	hmac_md5

	hmac_sha1

	hmac_sha2_256

	hmac_sha2_512

	hmac_sha3_256

	hmac_sha3_512

	html_select

	html_select_list

	http_basic_auth

	http_mksession

	http_request

	http_send

	json_decode

	json_encode

	last_err

	ldap_bind

	ldap_escape

	ldap_search_bind

	md5

	mysql_connect

	mysql_query

	print

	rand

	randombytes

	sha1

	sha2_256

	sha2_512

	sha3_256

	sha3_512

	sleep

	sock_connect

	sock_send

	sock_recv

	sock_sendline

	sock_recvline

	sock_recvall

	sock_recvline_contains

	sock_recvline_regex

	sock_recvn

	sock_recvuntil

	sock_sendafter

	sock_newline

	Wrapping python scripts

	Configuration
	Global user agent

	RLIMIT_NOFILE

Installation

If available, please prefer the package shipped by your linux distribution.

Archlinux

$ pacman -S authoscope

Mac OSX

$ brew install authoscope

Docker

$ docker run --rm kpcyrd/authoscope --help

Source

To build from source, make sure you have rust [https://rustup.rs/] and libssl-dev installed.

$ git clone https://github.com/kpcyrd/authoscope
$ cd authoscope
$ cargo build

Usage

Options

-n, --workers <workers> The number of concurrent workers to run.
-o, --output <output> Write results to this file.
-v, --verbose Enable verbose output.
-h, --help Prints help information.
-V, --version Prints version information.

Dictionary attack

Try each password for each user with every script.

authoscope dict <users> <passwords> [scripts]...

Credential confirmation

Load a list of credentials with the format user:password and verify them
with every script.

authoscope creds <credentials> [scripts]...

Username enumeration

Takes a list of username and verifies they exist on the system. This is still
executing the verify function with two arguments, but the password is set
to nil. You may write a script that can do both by checking the password
for nil to detect in which mode the script is executed.

authoscope enum <users> [scripts]...

Oneshot

Test a single username-password combination using a specific script. This
command is also useful when developing a new script. If the password argument
is omitted, the script is executed in enumerate mode. If you want to use this
command in scripts, set -x so the exitcode is set to 2 if the credentials
are invalid.

authoscope oneshot [-x] <script> <user> [password]

Scripting

A simple script could look like this:

descr = "example.com"

function verify(user, password)
 session = http_mksession()

 -- get csrf token
 req = http_request(session, 'GET', 'https://example.com/login', {})
 resp = http_send(req)
 if last_err() then return end

 -- parse token from html
 html = resp['text']
 csrf = html_select(html, 'input[name="csrf"]')
 token = csrf["attrs"]["value"]

 -- send login
 req = http_request(session, 'POST', 'https://example.com/login', {
 form={
 user=user,
 password=password,
 csrf=token
 }
 })
 resp = http_send(req)
 if last_err() then return end

 -- search response for successful login
 html = resp['text']
 return html:find('Login successful') ~= nil
end

Please see the reference and [examples](/scripts) for all available functions.
Keep in mind that you can use print(x) and authoscope oneshot to debug your
script.

base64_decode

Decode a base64 string.

base64_decode("ww==")

base64_encode

Encode a binary array with base64.

base64_encode("\x00\xff")

clear_err

Clear all recorded errors to prevent a requeue.

if last_err() then
 clear_err()
 return false
else
 return true
end

execve

Execute an external program. Returns the exit code.

execve("myprog", {"arg1", "arg2", "--arg", "3"})

hex

Hex encode a list of bytes.

hex("\x6F\x68\x61\x69\x0A\x00")

hmac_md5

Calculate an hmac with md5. Returns a binary array.

hmac_md5("secret", "my authenticated message")

hmac_sha1

Calculate an hmac with sha1. Returns a binary array.

hmac_sha1("secret", "my authenticated message")

hmac_sha2_256

Calculate an hmac with sha2_256. Returns a binary array.

hmac_sha2_256("secret", "my authenticated message")

hmac_sha2_512

Calculate an hmac with sha2_512. Returns a binary array.

hmac_sha2_512("secret", "my authenticated message")

hmac_sha3_256

Calculate an hmac with sha3_256. Returns a binary array.

hmac_sha3_256("secret", "my authenticated message")

hmac_sha3_512

Calculate an hmac with sha3_512. Returns a binary array.

hmac_sha3_512("secret", "my authenticated message")

html_select

Parses an html document and returns the first element that matches the css
selector. The return value is a table with text being the inner text and
attrs being a table of the elements attributes.

csrf = html_select(html, 'input[name="csrf"]')
token = csrf["attrs"]["value"]

html_select_list

Same as html_select but returns all matches instead of the
first one.

html_select_list(html, 'input[name="csrf"]')

http_basic_auth

Sends a GET request with basic auth. Returns true if no WWW-Authenticate
header is set and the status code is not 401.

http_basic_auth("https://httpbin.org/basic-auth/foo/buzz", user, password)

http_mksession

Create a session object. This is similar to requests.Session in
python-requests and keeps track of cookies.

session = http_mksession()

http_request

Prepares an http request. The first argument is the session reference and
cookies from that session are copied into the request. After the request has
been sent, the cookies from the response are copied back into the session.

The next arguments are the method, the url and additional options. Please
note that you still need to specify an empty table {} even if no options are
set. The following options are available:

	query - a map of query parameters that should be set on the url

	headers - a map of headers that should be set

	basic_auth - configure the basic auth header with {"user, "password"}

	user_agent - overwrite the default user agent with a string

	json - the request body that should be json encoded

	form - the request body that should be form encoded

	body - the raw request body as string

req = http_request(session, 'POST', 'https://httpbin.org/post', {
 json={
 user=user,
 password=password,
 }
})
resp = http_send(req)
if last_err() then return end
if resp["status"] ~= 200 then return "invalid status code" end

http_send

Send the request that has been built with http_request. Returns a table with
the following keys:

	status - the http status code

	headers - a table of headers

	text - the response body as string

req = http_request(session, 'POST', 'https://httpbin.org/post', {
 json={
 user=user,
 password=password,
 }
})
resp = http_send(req)
if last_err() then return end
if resp["status"] ~= 200 then return "invalid status code" end

json_decode

Decode a lua value from a json string.

json_decode("{\"data\":{\"password\":\"fizz\",\"user\":\"bar\"},\"list\":[1,3,3,7]}")

json_encode

Encode a lua value to a json string. Note that empty tables are encoded to an
empty object {} instead of an empty list [].

x = json_encode({
 hello="world",
 almost_one=0.9999,
 list={1,3,3,7},
 data={
 user=user,
 password=password,
 empty=nil
 }
})

last_err

Returns nil if no error has been recorded, returns a string otherwise.

if last_err() then return end

ldap_bind

Connect to an ldap server and try to authenticate with the given user.

ldap_bind("ldaps://ldap.example.com/",
 "cn=\"" .. ldap_escape(user) .. "\",ou=users,dc=example,dc=com", password)

ldap_escape

Escape an attribute value in a relative distinguished name.

ldap_escape(user)

ldap_search_bind

Connect to an ldap server, log into a search user, search for the target user
and then try to authenticate with the first DN that was returned by the search.

ldap_search_bind("ldaps://ldap.example.com/",
 -- the user we use to find the correct DN
 "cn=search_user,ou=users,dc=example,dc=com", "searchpw",
 -- base DN we search in
 "dc=example,dc=com",
 -- the user we test
 user, password)

md5

Hash a byte array with md5 and return the results as bytes.

hex(md5("\x00\xff"))

mysql_connect

Connect to a mysql database and try to authenticate with the provided
credentials. Returns a mysql connection on success.

sock = mysql_connect("127.0.0.1", 3306, user, password)

mysql_query

Run a query on a mysql connection. The 3rd parameter is for prepared
statements.

rows = mysql_query(sock, 'SELECT VERSION(), :foo as foo', {
 foo='magic'
})

print

Prints the value of a variable. Please note that this bypasses the regular
writer and may interfer with the progress bar. Only use this for debugging.

print({
 data={
 user=user,
 password=password
 }
})

rand

Returns a random u32 with a minimum and maximum constraint. The return
value can be greater or equal to the minimum boundary, and always lower than
the maximum boundary. This function has not been reviewed for cryptographic
security.

rand(0, 256)

randombytes

Generate the specified number of random bytes.

randombytes(16)

sha1

Hash a byte array with sha1 and return the results as bytes.

hex(sha1("\x00\xff"))

sha2_256

Hash a byte array with sha2_256 and return the results as bytes.

hex(sha2_256("\x00\xff"))

sha2_512

Hash a byte array with sha2_512 and return the results as bytes.

hex(sha2_512("\x00\xff"))

sha3_256

Hash a byte array with sha3_256 and return the results as bytes.

hex(sha3_256("\x00\xff"))

sha3_512

Hash a byte array with sha3_512 and return the results as bytes.

hex(sha3_512("\x00\xff"))

sleep

Pauses the thread for the specified number of seconds. This is mostly used to
debug concurrency.

sleep(3)

sock_connect

Create a tcp connection.

sock = sock_connect("127.0.0.1", 1337)

sock_send

Send data to the socket.

sock_send(sock, "hello world")

sock_recv

Receive up to 4096 bytes from the socket.

x = sock_recv(sock)

sock_sendline

Send a string to the socket. A newline is automatically appended to the string.

sock_sendline(sock, line)

sock_recvline

Receive a line from the socket. The line includes the newline.

x = sock_recvline(sock)

sock_recvall

Receive all data from the socket until EOF.

x = sock_recvall(sock)

sock_recvline_contains

Receive lines from the server until a line contains the needle, then return
this line.

x = sock_recvline_contains(sock, needle)

sock_recvline_regex

Receive lines from the server until a line matches the regex, then return this
line.

x = sock_recvline_regex(sock, "^250 ")

sock_recvn

Receive exactly n bytes from the socket.

x = sock_recvn(sock, 4)

sock_recvuntil

Receive until the needle is found, then return all data including the needle.

x = sock_recvuntil(sock, needle)

sock_sendafter

Receive until the needle is found, then write data to the socket.

sock_sendafter(sock, needle, data)

sock_newline

Overwrite the default n newline.

sock_newline(sock, "\r\n")

Wrapping python scripts

The authoscope runtime is still very bare bones, so you might have to shell
out to your regular python script occasionally. Your wrapper may look like this:

descr = "example.com"

function verify(user, password)
 ret = execve("./docs/test.py", {user, password})
 if last_err() then return end

 if ret == 2 then
 return "script signaled an exception"
 end

 return ret == 0
end

Your python script may look like this:

import sys

try:
 if sys.argv[1] == "foo" and sys.argv[2] == "bar":
 # correct credentials
 sys.exit(0)
 else:
 # incorrect credentials
 sys.exit(1)
except:
 # signal an exception
 # this requeues the attempt instead of discarding it
 sys.exit(2)

Configuration

You can place a config file at ~/.config/authoscope.toml to set some defaults.

Global user agent

[runtime]
user_agent = "w3m/0.5.3+git20180125"

RLIMIT_NOFILE

[runtime]
requires CAP_SYS_RESOURCE
sudo setcap 'CAP_SYS_RESOURCE=+ep' /usr/bin/authoscope
rlimit_nofile = 64000

Index

authoscope

authoscope (formerly badtouch) is a scriptable network authentication cracker.
While the space for common service bruteforce is already very well saturated,
you may still end up writing your own python scripts when testing credentials
for web applications.

The scope of authoscope is specifically cracking custom services. This is done
by writing scripts that are loaded into a lua runtime. Those scripts represent
a single service and provide a verify(user, password) function that returns
either true or false. Concurrency, progress indication and reporting is
magically provided by the authoscope runtime.

	Usage
	Options

	Dictionary attack

	Credential confirmation

	Username enumeration

	Oneshot

	Scripting
	base64_decode

	base64_encode

	clear_err

	execve

	hex

	hmac_md5

	hmac_sha1

	hmac_sha2_256

	hmac_sha2_512

	hmac_sha3_256

	hmac_sha3_512

	html_select

	html_select_list

	http_basic_auth

	http_mksession

	http_request

	http_send

	json_decode

	json_encode

	last_err

	ldap_bind

	ldap_escape

	ldap_search_bind

	md5

	mysql_connect

	mysql_query

	print

	rand

	randombytes

	sha1

	sha2_256

	sha2_512

	sha3_256

	sha3_512

	sleep

	sock_connect

	sock_send

	sock_recv

	sock_sendline

	sock_recvline

	sock_recvall

	sock_recvline_contains

	sock_recvline_regex

	sock_recvn

	sock_recvuntil

	sock_sendafter

	sock_newline

	Wrapping python scripts

	Configuration
	Global user agent

	RLIMIT_NOFILE

 nav.xhtml

 Table of Contents

 		
 authoscope

 		
 Installation

 		
 Archlinux

 		
 Mac OSX

 		
 Docker

 		
 Source

 		
 Usage

 		
 Options

 		
 Dictionary attack

 		
 Credential confirmation

 		
 Username enumeration

 		
 Oneshot

 		
 Scripting

 		
 base64_decode

 		
 base64_encode

 		
 clear_err

 		
 execve

 		
 hex

 		
 hmac_md5

 		
 hmac_sha1

 		
 hmac_sha2_256

 		
 hmac_sha2_512

 		
 hmac_sha3_256

 		
 hmac_sha3_512

 		
 html_select

 		
 html_select_list

 		
 http_basic_auth

 		
 http_mksession

 		
 http_request

 		
 http_send

 		
 json_decode

 		
 json_encode

 		
 last_err

 		
 ldap_bind

 		
 ldap_escape

 		
 ldap_search_bind

 		
 md5

 		
 mysql_connect

 		
 mysql_query

 		
 print

 		
 rand

 		
 randombytes

 		
 sha1

 		
 sha2_256

 		
 sha2_512

 		
 sha3_256

 		
 sha3_512

 		
 sleep

 		
 sock_connect

 		
 sock_send

 		
 sock_recv

 		
 sock_sendline

 		
 sock_recvline

 		
 sock_recvall

 		
 sock_recvline_contains

 		
 sock_recvline_regex

 		
 sock_recvn

 		
 sock_recvuntil

 		
 sock_sendafter

 		
 sock_newline

 		
 Wrapping python scripts

 		
 Configuration

 		
 Global user agent

 		
 RLIMIT_NOFILE

_static/plus.png

_static/file.png

_static/minus.png

_images/Ke5rHVsz5sJePNUK1k0ASAvuZ.png
$ badtouch dict users.txt /usr/share/dict/cracklib-small scripts/random.lua

[+]
[+]
[+]
[*]
[+]
[+]
[+]
[+]
[+]
[+]

60825 / 109526 (

loaded 2 users

loaded 54763 passwords

loaded 1 scripts

submitting 109526 jobs to threadpool with 16 workers

[h] help, [p] pause,
"foo":
"foo":
"foo":
"foo":
:"surfacing"

valid(random) =>

valid(random) =>
valid(random) =>
valid(random) =>
valid(random) =>

[r] resume, [+] increase threads, [-] decrease

"astm"
"axed"
"growths"
"olympia"

threads

) 55.53 % 60253.21/s 1s

